Clinical Guidance Statement

Prevention, detection, and management of subgaleal haemorrhage in the newborn

This statement has been developed and reviewed by the Women’s Health Committee and approved by the RANZCOG Board and Council.

A list of Women’s Health Committee Members can be found in Appendix A.

Disclosure statements have been received from all members of this committee.

Disclaimer This information is intended to provide general advice to practitioners. This information should not be relied on as a substitute for proper assessment with respect to the particular circumstances of each case and the needs of any patient. This document reflects emerging clinical and scientific advances as of the date issued and is subject to change. The document has been prepared having regard to general circumstances.

First endorsed by RANZCOG: July 2009
Current: November 2021
Review due: November 2026

Objectives:
To provide advice on the prevention, detection and management of subgaleal haemorrhage in the newborn.

Target audience:
All health professionals providing maternity care, and patients.

Values:
The evidence was reviewed by the Women’s Health Committee (RANZCOG), and applied to local factors relating to Australia and New Zealand.

Background:
This statement was first developed by Women’s Health Committee in July 2009 and reviewed in November 2015. The statement was reviewed in May 2021 and subsequent consultation with neonatologists among other specialists.

Funding:
The development and review of this statement was funded by RANZCOG.
Table of Contents

1. Summary of recommendations ..3

2. Introduction ...3

3. Discussions and Recommendations ..4
 3.1 Anatomy of subgaleal haemorrhage and potential consequences ...4
 3.2 Clinical Features ..4
 3.3 Prevention of SGH ...5
 3.3.1 Patient Selection ..5
 3.3.2 Technical aspects ..6
 3.4 Early Diagnosis ..6
 3.4.1 Evaluation of delivery risk factors for SGH ..6
 3.4.2 Intensity of neonatal surveillance regimen for babies born by instrumental delivery, according to the level of risk for SGH ..7
 3.5 Management of a possible Subgaleal Haemorrhage ...8

4. Conclusion ..9

5. References ..10

6. Other suggested reading ..10

7. Links to other College statements ..10

8. Patient information ...10

9. Appendices ..11
 Appendix A Women’s Health Committee Membership ..11
 Appendix B Overview of the development and review process for this statement12
 Appendix C Full Disclaimer ..13
 Appendix D Algorithm for Detection and Management of Subgaleal Haemorrhage in the Newborn Infant 14
1. **Summary of recommendations**

<table>
<thead>
<tr>
<th>Recommendation 1</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>The intensity of neonatal surveillance should be determined by the perceived risk for subgaleal haemorrhage, based on both the clinical circumstances and the neonatal condition.</td>
<td>Consensus-based recommendation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation 2</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 Surveillance (as outlined in Appendix D) is required for all newborn infants born by instrumental delivery or second-stage caesarean section with formal structured assessments between 1-6 hours and at 24 hours after birth, with escalation where abnormalities are observed.</td>
<td>Evidence-based recommendation Grade B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation 3</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic subgaleal haemorrhage is a medical emergency with a high mortality. Immediate discussion with a Neonatologist experienced in the management of actual or potential haemorrhagic shock is recommended. Prompt evaluation, resuscitation and supportive treatment is essential once the diagnosis is suspected. With timely diagnosis and appropriate resuscitation, full recovery can be anticipated.</td>
<td>Consensus-based recommendation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation 4</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>All neonates delivered instrumentally should have intramuscular Vitamin K prophylaxis as soon as practicable after birth.</td>
<td>Consensus-based recommendation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Good Practice Point</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimising the morbidity and mortality of SGH following an operative birth (whether forceps, vacuum extraction or second stage caesarean section following failed operative birth) requires a multifaceted approach, with the engagement of obstetricians, delivery suite and postnatal midwives, special care unit/nursery and paediatric staff.</td>
<td>Grade</td>
</tr>
</tbody>
</table>
A cephalohaematoma occurs when friction forces generated during the birth process result in bleeding between the periosteum and the underlying skull. It may occur during an unassisted vaginal birth but is more common with instrumental delivery. Because the blood is confined by the periosteum, the swelling does not cross the suture lines, resulting in a soft, fluctuant, localised swelling with a well-defined outline. Although it may increase in size over 12-24 hours, and may take several weeks to completely resolve, it almost never requires any specific medical treatment.

Source: Reproduced with kind permission of Child and Adolescent Health Service, King Edward Memorial Hospital, Government of Western Australia. Clinical Guideline - Subgaleal Haemorrhage (SGH) Detection and Management in the Newborn, Government of Western Australia Child and Adolescent Health Service.

3. Discussions and Recommendations

3.1 Anatomy of subgaleal haemorrhage and potential consequences

The epicranial aponeurosis is a sheet of fibrous tissue covering the entire cranial vault, extending from the orbital ridges to the nape of the neck and laterally to the ears. Separation of the epicranial aponeurosis from the underlying periosteum thus creates a compartment large enough that up to 250 ml of blood could be accommodated, with only a 1 cm increase in scalp thickness. The circulating blood volume of a newborn is approximately 90ml/ kg so in a 3kg baby a serious 20% reduction in circulating blood volume occurs with a haemorrhage of only 54ml. Given the large capacity of the sub-aponeurotic space, some infants can lose as much as 50-75% of their blood volume resulting in hypovolaemic shock, anaemia, coagulopathy and death. Among babies admitted to NICU with SGH, neonatal mortality ranges from 12% to 25%.

3.2 Clinical Features

The clinical features of a SGH may be of insidious onset and therefore a high index of clinical suspicion is required. The mean time of diagnosis is 1-6 hours after birth, which means observations often need to be performed overnight, given that most births (other than elective caesarean sections) occur out of hours, and specifically- assisted births following induction are clustered around midnight. Generalised signs of a SGH relate to blood loss and the diagnosis should be immediately considered in the setting of a newborn with a 5-
minute Apgar score < 7, without evidence of asphyxia; particularly if delivery was affected by prolonged or complicated vacuum extraction.

Later signs relating to haemodynamic instability include tachycardia, tachypnoea, poor activity and pallor, anaemia, coagulopathy, hypotension, acidosis and death.

The initial localised signs of a SGH are of vague, generalised scalp swelling and a laxity of the scalp, most commonly seen at the site of cup application following vacuum assisted birth. As further haemorrhage accumulates, the lesion becomes fluctuant; the sensation on palpation having been likened to ‘an old leather pouch filled with fluid’. A ballotable lesion that crosses the suture lines should alert the carer to the possibility of a SGH, as should the presence of ‘pitting oedema’ extending over the head, and in front of the ears. The fluid is gravity dependent, and will shift to the dependent side as the infant is repositioned. Crepitus, or a fluid ‘thrill’, may be noted, this sometimes being described as a “flick test”.

With progressive haemorrhage, elevation and displacement of the ear lobes, and puffiness of the eyelids (peri-auricular and periorbital oedema) follows. An irritable cry or signs of pain may be noted with handling. Serial head measurements may be useful although it should be noted that large blood loss can occur despite a relatively small increase in head circumference (estimated 38 ml per cm increase in head circumference).

The incidence of SGH is variably reported. While it occurs following normal delivery, forceps delivery and caesarean section, it is most frequently associated with the rotation and traction forces applied with a vacuum assisted birth. To give an idea of relative frequency, 6 reported an incidence of 0.6/1000 of all deliveries, and 4.6/1000 of vacuum deliveries. Uchil and Arulkumuran 6 reported a similar incidence of 0.4/1000 spontaneous vaginal deliveries, and 5.9/1000 vacuum assisted deliveries. Between 60-89% of SGH occur as a result of vacuum delivery. Other risk factors include nulliparity (adjusted OR 4.0), 5 minute Apgar score < 8, (OR 5.0), cup marks on the sagittal suture (suggesting asynclitic placement) (OR 4.4), leading edge of cup < 3cm from anterior fontanelle (suggesting a deflexing application) (OR 6.0) or failed vacuum extraction (OR 16.4). Over the past 3 decades, increasing use of vacuum assisted births has resulted in an increase in the prevalence of SGH in Australia and internationally. Nevertheless, SGH should be considered following any difficult assisted birth, whether delivery is ultimately completed by vacuum, forceps or failed instrumental/ second stage caesarean section.

The incidence of SGH is likely to be grossly underestimated because of difficulty in making the diagnosis, especially when the SGH is small.

Boo et al (2005) 7 reported a 21% incidence of SGH following vacuum extraction in a Malaysian hospital where a formal surveillance program for SGH was in place. The diagnosis of SGH was made at a median of 1 hour of age, and the mortality of SGH in this series was only 2.8%. Their high incidence of SGH and low rate of associated mortality suggest that small undiagnosed SGHs are common and that a structured surveillance program following complicated delivery, with early diagnosis and prompt treatment may reduce mortality.

3.3 Prevention of SGH

3.3.1 Patient Selection

Vacuum extraction is absolutely contra-indicated in the following situations:

- a. < 34 weeks gestation (and relatively contraindicated at < 36 weeks), where shearing forces are more likely to be associated with tearing of fragile blood vessels resulting in excessive bleeding.
- b. Among infants diagnosed or suspected of having a bleeding disorder, such as haemophilia, or thrombocytopenia of any cause (e.g. alloimmune).
3.3.2 Technical aspects
The importance of adequate training and supervision in vacuum delivery cannot be over-emphasised. To minimise the risk of SGH, shearing forces on the scalp should be minimised.

This includes placing the centre of the cup over the flexion point which is situated on the sagittal suture three centimetres in front of the posterior fontanelle and six centimetres from the anterior fontanelle:

a. Cup placement should be:
 i. Placed evenly across the sagittal suture, rather than being applied to one or other parietal bone to avoid asynclitism with traction.
 ii. The edge of the cup should be placed at least 3 cm from the anterior fontanelle to avoid extension of the fetal head during traction (assuming a standard 6cm cup is being used).
 iii. Appropriate cup placement may be impossible if there is significant deflexion or asynclitism of the head and a “large soft-stemmed” device is being used, because it cannot be placed sufficiently posteriorly.

b. Traction should be steady, applied only with contractions and only with maternal effort.

c. Adequate descent should be verified (with the non-pulling hand) during each pull.

d. Traction should not be unduly prolonged.

Experts vary in the maximum time allowed, number of pulls and number of allowable cup detachments.

i. Time
 Vacca (2003)\(^8\) suggests an upper limit of 20 minutes from cup application. Where delivery is not imminent after 15 minutes, operators should evaluate whether further traction is warranted, and consider recourse to caesarean section. It should be noted that where the head is deeply engaged in the maternal pelvis (and macrosomia is not anticipated), that completion of vaginal delivery by vacuum extraction or forceps may still be safer than a caesarean section.

ii. Number of pulls
 Many experts suggest a maximum of three pulls (defined as three contractions, even if there are multiple maternal ‘pushes’ within each contraction), although several more pulls may be acceptable if the head has descended to the level of the perineum especially if delivery is attempted without an episiotomy.\(^8\)

iii. Cup detachments
 Cup detachment should not be regarded as a safety feature of the vacuum extractor, as the rapid decompression may result in vessel damage and predispose to SGH. The acceptable number of detachments will depend on whether detachment was due to equipment failure, or to poor application and/or excessive traction. Two detachments (but certainly no more than three) would generally be considered acceptable, but re-application of the cup should only be considered where there has been definite progress with preceding pulls, or the head is on the perineum.

3.4 Early Diagnosis
3.4.1 Evaluation of delivery risk factors for SGH
SGH is most likely to follow vacuum extraction (OR 7.17; 5.43-10.25) or forceps (OR 2.66; 1.78-5.18).\(^9\)
In the series of Boo et al (2005)\(^7\), risk factors for SGH following vacuum extraction included: nulliparity (adjusted OR 4.0), 5 minute Apgar < 7 (OR 5.0), cup marks on the sagittal suture (suggestive of paramedian application) (OR 4.4), leading edge of the vacuum cup too close (< 3 cm) to the anterior fontanelle (suggestive of deflexing application) (OR 6.0) and a failed vacuum extraction (OR 16.4).
Similarly, Vacca (2003)\(^8\) concluded that significant SGH is almost always preceded by a difficult
vacuum extraction as evidenced by a prolonged extraction with excessive number or strength of pulls, multiple cup detachments, and/or completion of delivery with forceps.

3.4.2 Intensity of neonatal surveillance regimen for babies born by instrumental delivery, according to the level of risk for SGH

The intensity of neonatal surveillance should be determined by the perceived risk for SGH, based on both the clinical circumstances and the neonatal condition. Mean time to diagnosis of SGH is 1-6 hours after birth. A suggested regimen is given below and in attached clinical algorithm (Appendix D).

Level 1 Neonatal Surveillance

i. Indication:
- Minimum surveillance regimen for all infants delivered by instrumental delivery or second-stage caesarean section.

ii. Regimen:
- Baseline set of post-delivery observations including activity, colour, heart rate and respiratory rate at one hour of age.
- Hats and bonnets should be avoided (or removed frequently), so that changing head shape or size is noted.
- Changing head circumference and/or scalp appearance is crucial to early diagnosis of subgaleal haemorrhage and should immediately prompt escalation to ‘Level 2’ surveillance.
- Concerns regarding neonatal behaviour (poor feeding, poor activity, pallor) should prompt a further full set of observations, and institution of ‘Level 2’ surveillance.

Level 2 Neonatal Surveillance

i. Indication: one or more of the following:
- Total vacuum extraction time > 20 minutes and/or > 3 pulls and/or > 2 cup detachments.
- 5 minute Apgar score < 7.
- At clinician request (e.g. if the delivery was felt to have been otherwise ‘difficult’ or the cup placement was found to be paramedian or non-flexing).
- Level 1 neonatal surveillance observations are causing concern (such as diffuse boggy head swelling, or increasing head circumference).

ii. Regimen:
- If Level 2 surveillance established at delivery, neonatal blood should be taken for assessment of:
 - Acid base status (cord pH and/or lactate levels).
 - Haematocrit and platelet count.
 - Formal neonatal observations for SGH should continue for at least the first 12 hours of life (the median time of diagnosis of SGH in the study of Chang et al (2007) was 7.8 hours of life).
 - Hourly for the first 2 hours of life, and then 2-hourly for a further 6 hours. A pulse oximeter on the postnatal ward may assist staff with accurate recording of heart rate, so that the onset of progressive tachycardia may be more easily recognised.
 - These infants should have a full set of observations performed (activity, colour, heart rate, respiratory rate, review of head size (formal measurement of head circumference) and shape for location and nature of swelling).

Level 3 Neonatal Surveillance

i. Indications
- Where there is a clinical suspicion of SGH immediately following birth.
- Where abnormalities are noted on Level 2 surveillance.
ii. Regimen

- The infant should be reviewed by a paediatrician. These infants will likely be admitted to the special care unit/nursery, with institution of resuscitation (if necessary) and further laboratory assessment including haematocrit, platelet count and coagulation profile.

3.5 Management of a possible Subgaleal Haemorrhage

Symptomatic SGH is a medical emergency with a high morbidity and mortality. Immediate discussion with a Neonatologist experienced in the management of actual or potential haemorrhagic shock is recommended. Prompt evaluation, resuscitation and supportive treatment is essential once the diagnosis is suspected. With timely diagnosis and appropriate resuscitation, full recovery can be anticipated.

- **SGH is a clinical diagnosis.** Stabilisation should not be delayed by any attempts to confirm the diagnosis with imaging.
- **Aggressive resuscitation to restore circulating blood volume, provide circulatory support, correct acidosis and to correct coagulopathy is the mainstay of management.**
- **Head wrapping may be difficult to perform and does not appear to be of benefit.**
- **Frequent re-evaluation of haemodynamic stability and response to blood and blood products is necessary.**

Recommendation 3

<table>
<thead>
<tr>
<th>The intensity of neonatal surveillance should be determined by the perceived risk for SGH, based on both the clinical circumstances and the neonatal condition.</th>
<th>Consensus-based recommendation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Level 1 Surveillance (as outlined in Appendix D) is required for all newborn infants born by instrumental delivery or second-stage caesarean section with formal structured assessments between 1-6 hours and at 24 hours after birth, with escalation where abnormalities are observed.</th>
<th>Evidence-based recommendation</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Recommendation 4</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>All neonates delivered instrumentally should have intramuscular Vitamin K prophylaxis as soon as practicable after birth.</td>
<td>Consensus-based recommendation</td>
</tr>
</tbody>
</table>

All babies with suspected SGH who require fluid resuscitation should be transferred to a neonatal special care unit or NICU.
4. Conclusion

Minimising the morbidity and mortality of SGH requires a multifaceted approach, with the engagement of obstetricians, delivery suite and postnatal midwives, special care unit/nursery and paediatric staff. The following approaches are required:

- **Prevention**
 - Selection of patients - avoiding vacuum extraction in infants at high risk of SGH.
 - Appropriate technique - accurate positioning of the cup, application of traction and recognising when to abandon the procedure in favour of another mode of delivery.

- **Early Diagnosis**
 - Formally assessing the individual infant’s risk of SGH following every instrumental delivery.
 - Institution of a neonatal surveillance regimen according to perceived risk.

- **Treatment**
 - Prompt evaluation, resuscitation and supportive treatment once the diagnosis is suspected.

<table>
<thead>
<tr>
<th>Good Practice Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimising the morbidity and mortality of SGH following an operative birth (whether forceps, vacuum extraction or second stage caesarean section following failed operative birth) requires a multifaceted approach, with the engagement of obstetricians, delivery suite and postnatal midwives, special care unit/nursery and paediatric staff.</td>
</tr>
</tbody>
</table>
5. References

6. Other suggested reading

- Davis D. Neonatal subgaleal haemorrhage following vacuum extraction delivery. JAMC 2001; 164: 1452-1453.

7. Links to other College statements

- Delivery of the Fetus at Caesarean Section (C-Obs 37)

8. Patient information

- A range of RANZCOG Patient Information Pamphlets can be ordered via:
9. Appendices

Appendix A: Women’s Health Committee Membership (11th Council)

<table>
<thead>
<tr>
<th>Name</th>
<th>Position on Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Yee Leung</td>
<td>Chair and Board Member</td>
</tr>
<tr>
<td>Dr Gillian Gibson</td>
<td>Deputy Chair, Gynaecology</td>
</tr>
<tr>
<td>Dr Scott White</td>
<td>Deputy Chair, Obstetrics</td>
</tr>
<tr>
<td>Dr Jared Watts</td>
<td>Member and EAC Representative</td>
</tr>
<tr>
<td>Dr Kristy Milward</td>
<td>Member and Councillor</td>
</tr>
<tr>
<td>Dr Will Milford</td>
<td>Member and Councillor</td>
</tr>
<tr>
<td>Dr Frank O’Keeffe</td>
<td>Member and Councillor</td>
</tr>
<tr>
<td>Professor Sue Walker AO, Neonatologist</td>
<td>Member</td>
</tr>
<tr>
<td>Professor Steve Robson</td>
<td>Member</td>
</tr>
<tr>
<td>Dr Roy Watson</td>
<td>Member and Councillor</td>
</tr>
<tr>
<td>Dr Susan Fleming</td>
<td>Member and Councillor</td>
</tr>
<tr>
<td>Dr Sue Belgrave</td>
<td>Member and Councillor</td>
</tr>
<tr>
<td>Dr Marilyn Clarke</td>
<td>ATSI Representative</td>
</tr>
<tr>
<td>Professor Kirsten Black</td>
<td>Member</td>
</tr>
<tr>
<td>Dr Thangeswaran Rudra</td>
<td>Member</td>
</tr>
<tr>
<td>Dr Nisha Khot</td>
<td>Member and SIMG Representative</td>
</tr>
<tr>
<td>Dr Judith Gardiner</td>
<td>Diplomate Representative</td>
</tr>
<tr>
<td>Dr Angela Brown</td>
<td>Midwifery Representative, Australia</td>
</tr>
<tr>
<td>Ms Adrienne Priday</td>
<td>Midwifery Representative, New Zealand</td>
</tr>
<tr>
<td>Ms Ann Jorgensen</td>
<td>Community Representative</td>
</tr>
<tr>
<td>Dr Ashleigh Seiler</td>
<td>Trainee Representative</td>
</tr>
<tr>
<td>Dr Leigh Duncan</td>
<td>He Hono Wahine Representative</td>
</tr>
<tr>
<td>Prof Caroline De Costa</td>
<td>Co-opted member (ANZIOG member)</td>
</tr>
<tr>
<td>Dr Christine Sammartino</td>
<td>Observer</td>
</tr>
</tbody>
</table>

RANZCOG wishes to acknowledge the significant contribution of Professor Sue Walker AO (Member - Women’s Health Committee) and Dr Steve Resnick, Neonatologist (incoming co-opted Member - Women’s Health Committee) to the update of this statement.
Appendix B: Overview of the development and review process for this statement

i. Steps in developing and updating this statement
This statement was developed in March 2013. The Women’s Health Committee carried out the following steps in reviewing this statement:

- Declarations of interest were sought from all members prior to reviewing this statement.
- Structured clinical questions were developed and agreed upon.
- An updated literature search to answer the clinical questions was undertaken.
- At the November 2021 Women’s Health Committee meeting, the existing consensus-based recommendations were reviewed and updated (where appropriate) based on the available body of evidence and clinical expertise. Recommendations were graded according to Appendix B part iii.

ii. Declaration of interest process and management
- Declaring interests is essential in order to prevent any potential conflict between the private interests of members, and their duties as part of the Women’s Health Committee.
- A declaration of interest form specific to guidelines and statements was developed by RANZCOG and approved by the RANZCOG Board in September 2012. The Women’s Health Committee members were required to declare their relevant interests in writing on this form prior to participating in the review of this statement.
- Members were required to update their information as soon as they become aware of any changes to their interests and there was also a standing agenda item at each meeting where declarations of interest were called for and recorded as part of the meeting minutes.
- There were no significant real or perceived conflicts of interest that required management during the process of updating this statement.

iii. Grading of recommendations
Each recommendation in this College statement is given an overall grade as per the table below, based on the National Health and Medical Research Council (NHMRC) Levels of Evidence and Grades of Recommendations for Developers of Guidelines. Where no robust evidence was available but there was sufficient consensus within the Women’s Health Committee, consensus-based recommendations were developed or existing ones updated and are identifiable as such. Consensus-based recommendations were agreed to by the entire committee. Good Practice Notes are highlighted throughout and provide practical guidance to facilitate implementation. These were also developed through consensus of the entire committee.

<table>
<thead>
<tr>
<th>Recommendation category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-based</td>
<td>A Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td></td>
<td>B Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td></td>
<td>C Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
</tr>
<tr>
<td></td>
<td>D The body of evidence is weak and the recommendation must be applied with caution</td>
</tr>
<tr>
<td>Consensus-based</td>
<td>Recommendation based on clinical opinion and expertise as insufficient evidence available</td>
</tr>
<tr>
<td>Good Practice Note</td>
<td>Practical advice and information based on clinical opinion and expertise</td>
</tr>
</tbody>
</table>
Appendix C Full Disclaimer

Purpose
This Statement has been developed to provide general advice to practitioners about women’s health issues concerning the management of subgaleal haemorrhage in neonates and should not be relied on as a substitute for proper assessment with respect to the particular circumstances of each case and the needs of any person. It is the responsibility of each practitioner to have regard to the particular circumstances of each case. Clinical management should be responsive to the needs of the individual cases of subgaleal haemorrhage and the particular circumstances of each case.

Quality of information
The information available in the management of subgaleal haemorrhage is intended as a guide and provided for information purposes only. The information is based on the Australian/New Zealand context using the best available evidence and information at the time of preparation. While the Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG) had endeavoured to ensure that information is accurate and current at the time of preparation, it takes no responsibility for matters arising from changed circumstances or information or material that may have become subsequently available. The use of this information is entirely at your own risk and responsibility.

For the avoidance of doubt, the materials were not developed for use by patients, and patients must seek medical advice in relation to any treatment. The material includes the views or recommendations of third parties and does not necessarily reflect the views of RANZCOG or indicate a commitment to a particular course of action.

Third-party sites
Any information linked in this Statement is provided for the user’s convenience and does not constitute an endorsement or a recommendation or indicate a commitment to a particular course of action of this information, material, or content unless specifically stated otherwise.

RANZCOG disclaims, to the maximum extent permitted by law any responsibility and all liability (including without limitation, liability in negligence) to you or any third party for inaccurate, out of context, incomplete or unavailable information contained on the third-party website, or for whether the information contained on those websites is suitable for your needs or the needs of any third party for all expenses, losses, damages and costs incurred.

Exclusion of liability
The College disclaims, to the maximum extent permitted by law, all responsibility and all liability (including without limitation, liability in negligence) to you or any third party for any loss or damage which may result from your or any third party’s use of or reliance of this guideline, including the materials within or referred to throughout this document being in any way inaccurate, out of context, incomplete or unavailable for all expenses, losses, damages, and costs incurred.

Exclusion of warranties
To the maximum extent permitted by law, RANZCOG makes no representation, endorsement or warranty of any kind, expressed or implied in relation to the materials within or referred to throughout this guideline being in any way inaccurate, out of context, incomplete or unavailable for all expenses, losses, damages and costs incurred.

These terms and conditions will be constructed according to and are governed by the laws of Victoria, Australia.
Appendix D Algorithm for Detection and Management of Subgaleal Haemorrhage in the Newborn Infant

Algorithm for Detection and Management of Subgaleal Haemorrhage (SGH) in the Newborn Infant

Level 1 Surveillance
- Is required for all newborn infants birthed by instrumental delivery or second-stage caesarean section.

Level 1 Surveillance
- Baseline set of post-birth observations at one hour of age include: activity, colour, heart rate, respiratory rate, head circumference.
- Structured assessments between 1-6 hours and at 24 hours after birth.
- Hats/bonnets should be avoided (or removed frequently), so that changing head shape or increasing head circumference is noted.

Where abnormalities are noted on Level 1 surveillance, the newborn infant should commence Level 2 Surveillance.

Level 2 Surveillance
- Is required for one or more of the following:
 - Total vacuum extraction time > 20 minutes and/or
 - 3 pulls and/or 2 cup detachments
 - 5 minute Apgar < 7

Notify paediatric staff and if possible cord blood should be taken at birth for cord pH, lactate, haematocrit and platelet count.

Newborn Infant Observations (>first 12 hours of life) including scalp observation and head circumference measurements:
- Hourly for the first 2 hours of life.
- 2-hourly for further 6 hours.
- A pulse oximeter should be used to accurately record the heart rate so the onset of progressive tachycardia may be recognised.

Level 2 Surveillance
- Is required for all newborn infants if there is a clinical suspicion of SGH immediately following birth.

Level 3 Surveillance
- Is required for one or more of the following:
 - Total vacuum extraction time > 20 minutes and/or
 - 3 pulls and/or 2 cup detachments
 - 5 minute Apgar < 7

Where abnormalities are noted on Level 2 Surveillance, the newborn infant should commence Level 3 Surveillance.

Level 3 Surveillance
- The newborn infant should be reviewed by a paediatrician immediately following birth and transferred to Special Care Nursery/NICU for observation (incl. resuscitation) and further laboratory assessments.

Source: With kind permission, adapted from Department of Paediatrics, Mercy Hospital for Women. Clinical Practice Guideline: Prevention, Detection and Management of Subgaleal Haemorrhage in the Newborn (2021).